The new, aggressive pathogens in China and Saudi Arabia may or may not carve a deadly path to the West. But sooner or later, you can be sure, one will

May 9, 2013

The Next Pandemic: Not if, but When


TERRIBLE new forms of infectious disease make headlines, but not at the start. Every pandemic begins small. Early indicators can be subtle and ambiguous. When the Next Big One arrives, spreading across oceans and continents like the sweep of nightfall, causing illness and fear, killing thousands or maybe millions of people, it will be signaled first by quiet, puzzling reports from faraway places — reports to which disease scientists and public health officials, but few of the rest of us, pay close attention. Such reports have been coming in recent months from two countries, China and Saudi Arabia.

You may have seen the news about H7N9, a new strain of avian flu claiming victims in Shanghai and other Chinese locales. Influenzas always draw notice, and always deserve it, because of their great potential to catch hold, spread fast, circle the world and kill lots of people. But even if you’ve been tracking that bird-flu story, you may not have noticed the little items about a “novel coronavirus” on the Arabian Peninsula.This came into view last September, when the Saudi Ministry of Health announced that such a virus — new to science and medicine — had been detected in three patients, two of whom had already died. By the end of the year, a total of nine cases had been confirmed, with five fatalities. As of Thursday, there have been 18 deaths, 33 cases total, including one patient now hospitalized in France after a trip to the United Arab Emirates. Those numbers are tiny by the standards of global pandemics, but here’s one that’s huge: the case fatality rate is 55 percent. The thing seems to be almost as lethal as Ebola.

Coronaviruses are a genus of bugs that cause respiratory and gastrointestinal infections, sometimes mild and sometimes fierce, in humans, other mammals and birds. They became infamous by association in 2003 because the agent for severe acute respiratory syndrome, or SARS, is a coronavirus. That one emerged suddenly in southern China, passed from person to person and from Guangzhou to Hong Kong, then went swiftly onward by airplane to Toronto, Singapore and elsewhere. Eventually it sickened about 8,000 people, of whom nearly 10 percent died. If not for fast scientific work to identify the virus and rigorous public health measures to contain it, the total case count and death toll could have been much higher.

One authority at the Centers for Disease Control and Prevention, an expert on nasty viruses, told me that the SARS outbreak was the scariest such episode he’d ever seen. That cautionary experience is one reason this novel coronavirus in the Middle East has attracted such concern.

Another reason is that coronaviruses as a group are very changeable, very protean, because of their high rates of mutation and their proclivity for recombination: when the viruses replicate, their genetic material is continually being inaccurately copied — and when two virus strains infect a single host cell, it is often intermixed. Such rich genetic variation gives them what one expert has called an “intrinsic evolvability,” a capacity to adapt quickly to new circumstances within new hosts.

But hold on. I said that the SARS virus “emerged” in southern China, and that raises the question: emerged from where? Every new disease outbreak starts as a mystery, and among the first things to be solved is the question of source.

In most cases, the answer is wildlife. Sixty percent of our infectious diseases fall within this category, caused by viruses or other microbes known as zoonoses. A zoonosis is an animal infection transmissible to humans. Another bit of special lingo: reservoir host. That’s the animal species in which the zoonotic bug resides endemically, inconspicuously, over time. Some unsuspecting person comes in contact with an infected monkey, ape, rodent or wild goose — or maybe just with a domestic duck that has fed around the same pond as the wild goose — and a virus achieves transcendence, passing from one species of host into another. The disease experts call that event a spillover.

Researchers have established that the SARS virus emerged from a bat. The virus may have passed through an intermediate species — another animal, perhaps infected by cage-to-cage contact in one of the crowded live-animal markets of the region — before getting into a person. And while SARS hasn’t recurred, we can assume that the virus still abides in southern China within its reservoir hosts: one or more kinds of bat.

Bats, though wondrous and necessary animals, do seem to be disproportionately implicated as reservoir hosts of new zoonotic viruses: MarburgHendraNipahMenangle and others. Bats gather in huge, sociable aggregations and have long life spans, circumstances that may be especially hospitable to viruses. And they fly. Traveling nightly to feed, shifting occasionally from one communal roost to another, they carry their infections widely and spread them to one another.

As for the novel coronavirus in Saudi Arabia, its reservoir host is still undiscovered. But you can be confident that scientific sleuths are on the case and that they will look closely at Arabian bats, including those that visit the productive date-palm groves at the oases of Al Ahsa, near the Persian Gulf.

What can we do? The first obligation is informed awareness. Early reports arrive from afar, seeming exotic and peripheral, but don’t be fooled. One emergent virus, sooner or later, will be the Next Big One. It may show up first in China, in Congo or Bangladesh, or maybe on the Arabian Peninsula; but it will globalize. Most people on earth nowadays live within 24 hours’ travel time of Saudi Arabia. And in October, when millions of people journey to Mecca for the hajj, the Muslim pilgrimage, the lines of connections among humans everywhere will be that much shorter.

We can’t detach ourselves from emerging pathogens either by distance or lack of interest. The planet is too small. We’re like the light heavyweight boxer Billy Conn, stepping into the ring with Joe Louis in 1946: we can run, but we can’t hide.

David Quammen, a contributing writer for National Geographic, is the author, most recently, of “Spillover: Animal Infections and the Next Human Pandemic.”

May 9, 2013

The Next Contagion: Closer Than You Think


THERE has been a flurry of recent attention over two novel infectious agents: the first, a strain of avian influenza virus (H7N9) in China that is causing severe respiratory disease and other serious health complications in people; the second, a coronavirus, first reported last year in the Middle East, that has brought a crop of new infections. While the number of human cases from these two pathogens has so far been limited, the death rates for each are notably high.

Alarmingly, we face a third, and far more widespread, ailment that has gotten little attention: call it “contagion exhaustion.” News reports on a seemingly unending string of frightening microbes — bird flu, flesh-eating strep, SARS, AIDS, Ebola, drug-resistant bugs in hospitals, the list goes on — have led some people to ho-hum the latest reports.

Some seem to think that public health officials pull a microbe “crisis du jour” out of their proverbial test tube when financing for infectious disease research and control programs appears to be drying up. They dismiss warnings about the latest bugs as “crying wolf.” This misimpression could be deadly.

It’s important to understand our relationship with the microbial world. Most microscopic organisms benefit humans, other organisms or the environment in some way — for example, they help us digest our food and keep bad bugs in check.

At the same time, we are never far away from one of the 1,400 kinds of disease-causing microbes that are capable of infecting people; many infect animals, too. Of these microbes, known as pathogens, about 500 can be transmitted from humans to other humans. And around 150 of them can cause epidemics — rapidly spreading outbreaks of serious, sometimes life-threatening, disease.

Each pathogen has its own “footprint” (or potential footprint) on our human health and social, political and economic landscapes. Far too often the public — and policy makers and journalists — confuse those infectious diseases that can be life-threatening for a limited number of individuals with those that can cause widespread damage to society as a whole.

A disease in the former category is “flesh-eating strep” (invasive group A streptococcal disease). Approximately 9,000 to 11,500 cases are recognized each year in the United States, and about 1,000 to 1,800 of these patients die. When outbreaks of this type occur in this country, particularly if they affect schools or day-care centers, they generate front-page news and widespread concern.

Conversely, last year worldwide 1.7 million of the 34 million people infected with H.I.V. died from AIDS. There was little front-page news coverage about these cases. Nor was there much coverage last year of the estimated 1.5 million tuberculosis-related deaths, of the 1.1 million young children who died of infectious diarrheal illness, or of the 825,000 deaths from malaria. Infectious diseases like these plague the world but, because they don’t occur in our backyard, they remain relatively invisible to Americans.

In the case of the two latest threats — the H7N9 influenza virus and the new coronavirus — the number of infected people is small, and the infections are occurring thousands of miles away from the United States. Yet we should be seriously concerned about both.

Diseases like H7N9 influenza and the new coronavirus are different from noninfectious causes of serious illness and death — and even most microbial causes of disease. They can kill large numbers of people quickly and simultaneously around the world. The 1918 flu pandemic killed an estimated 50 million people worldwide in less than 18 months. The 2003 SARS pandemic, while more limited, resulted in more than 8,275 cases and 775 deaths.

Why does this suddenly happen? Both animal influenza and coronaviruses normally infect animals, not humans. But when these viruses undergo very specific genetic changes that occur as a result of everyday microbial evolution, we have a whole new ballgame; one that is largely played by their rules and on their schedule. Now a virus that once could infect only animals and maybe very rarely infect humans is readily transmitted by people to other people. You could get infected just by breathing shared air with the airplane passenger next to you, or by standing next to the wrong person in an elevator or even by lying next to your sleeping mate. We call this respiratory transmission.

Consider how quickly the H1N1 influenza virus spread in 2009: within the first month of that pandemic, the virus had infected people in at least 42 countries. The only thing keeping these viruses from becoming pandemic killers is their genetics. With few exceptions, all the current human H7N9 and coronavirus cases represent sporadic animal-to-human transmission. But if these viruses continue to spread in their respective animal reservoirs, repeated transmissions of the viruses to humans may lead to the genetic changes that will make either virus readily transmitted by humans to humans. Add in the fact that humans have little to no natural immunity to these viruses, and we could have the next pandemic.

Our public health tools to fight these viruses are limited. We have no vaccines or effective drugs readily available to stop or treat the new coronavirus in the Middle East. And while we have influenza vaccines, my colleagues and I have detailed in anarticle this week in the Journal of the American Medical Association why we most likely will have limited global impact on an H7N9 pandemic with our current outdated influenza vaccine technology.

In short, we won’t be saved by vaccines if a pandemic emerges from these two new threats. At best, in the case of H7N9, we can only hope that vaccines can help somewhat.

The toll is economic, not just human. Studies have shown that a severe global pandemic, caused by viruses like influenza or coronavirus, could bring the global economy, which is ever reliant on global communications and transportation networks, to its knees. When people are too sick or too afraid to work, borders are closed and global supply chains break, and trade falls. Over months, the economic costs could send the world into recession.

Are either H7N9 or coronavirus pandemics inevitable? We don’t know. But each time one of these viruses infects a human or even another mammal, it’s one more throw at the genetic roulette table.

To reduce the odds of a pandemic, China and the Middle Eastern countries where these viruses are now circulating in animals must do everything they can to identify the animal sources and use every tool they have to eliminate the spreading of the disease. To cull millions of apparently healthy chickens or other domestic animals is not easy, but it is essential.

The world as whole must invest in a new generation of effective influenza and coronavirus vaccines. They are the ultimate insurance policy against similar future emerging viruses. These viruses may seem far away, but tomorrow they could be at America’s doorstep.

Michael T. Osterholm, an epidemiologist, is a professor of environmental health sciences in the School of Public Health, and the director of the Center for Infectious Disease Research and Policy, at the University of Minnesota. .

About bambooinnovator
Kee Koon Boon (“KB”) is the co-founder and director of HERO Investment Management which provides specialized fund management and investment advisory services to the ARCHEA Asia HERO Innovators Fund (, the only Asian SMID-cap tech-focused fund in the industry. KB is an internationally featured investor rooted in the principles of value investing for over a decade as a fund manager and analyst in the Asian capital markets who started his career at a boutique hedge fund in Singapore where he was with the firm since 2002 and was also part of the core investment committee in significantly outperforming the index in the 10-year-plus-old flagship Asian fund. He was also the portfolio manager for Asia-Pacific equities at Korea’s largest mutual fund company. Prior to setting up the H.E.R.O. Innovators Fund, KB was the Chief Investment Officer & CEO of a Singapore Registered Fund Management Company (RFMC) where he is responsible for listed Asian equity investments. KB had taught accounting at the Singapore Management University (SMU) as a faculty member and also pioneered the 15-week course on Accounting Fraud in Asia as an official module at SMU. KB remains grateful and honored to be invited by Singapore’s financial regulator Monetary Authority of Singapore (MAS) to present to their top management team about implementing a world’s first fact-based forward-looking fraud detection framework to bring about benefits for the capital markets in Singapore and for the public and investment community. KB also served the community in sharing his insights in writing articles about value investing and corporate governance in the media that include Business Times, Straits Times, Jakarta Post, Manual of Ideas, Investopedia, TedXWallStreet. He had also presented in top investment, banking and finance conferences in America, Italy, Sydney, Cape Town, HK, China. He has trained CEOs, entrepreneurs, CFOs, management executives in business strategy & business model innovation in Singapore, HK and China.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: